عرض بسيط للتسجيلة

المؤلفRazavi Tosee, Seyed V.
المؤلفFaridmehr, Iman
المؤلفNehdi, Moncef L.
المؤلفPlevris, Vagelis
المؤلفValerievich, Kiyanets A.
تاريخ الإتاحة2024-10-02T05:59:50Z
تاريخ النشر2022
اسم المنشورBuildings
المصدرScopus
الرقم المعياري الدولي للكتاب20755309
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/buildings12111870
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59663
الملخصThis study deploys a hybrid Grey Wolf Optimizer Neural Network Model for predicting the crack width in reinforced concrete slabs strengthened with carbon fiber-reinforced polymers (CFRP). Reinforced concrete (RC) one-way slabs (1800 x 400 x 120 mm in size) were strengthened with CFRP with various lengths (1800, 1100, and 700 mm) and subjected to four-point bending. The experimental results were compared to corresponding values for conventional RC slabs. The observed crack width results were recorded, and subsequently examined against the expression recommended by Eurocode 2. To estimate the crack width of CFRP-reinforced slabs, ANN combined with the Grey Wolf Optimizer algorithm was employed whereby the applied load, CFRP width/length, X/Y crack positions, and stress in steel reinforcement and concrete were defined as the input parameters. Experimental results showed that the larger the length and width of the carbon fiber, the smaller the maximum crack width in the tensile area of the slab at the final load step. On average, the crack width in slabs retrofitted with CFRP laminates increased by around 80% compared to a slab without CFRP. The results confirm that the equation provided by Eurocode 2 provides an unconservative estimation of crack widths for RC slabs strengthened with CFRP laminates. On the other hand, the results also confirm that the proposed informational model could be used as a reliable tool for estimating the crack width in RC slabs. The findings provide valuable insight into the design approaches for RC slabs and rehabilitation strategies for existing deficient RC slabs using CFRP.
اللغةen
الناشرMDPI
الموضوعartificial intelligence
CFRP
concrete slab
crack width
neural networks
العنوانPredicting Crack Width in CFRP-Strengthened RC One-Way Slabs Using Hybrid Grey Wolf Optimizer Neural Network Model
النوعArticle
رقم العدد11
رقم المجلد12
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة