عرض بسيط للتسجيلة

المؤلفGeorgioudakis, Manolis
المؤلفPlevris, Vagelis
تاريخ الإتاحة2024-10-02T05:59:50Z
تاريخ النشر2023
اسم المنشورComputation
المصدرScopus
الرقم المعياري الدولي للكتاب20793197
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/computation11070126
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59671
الملخصThe dynamic analysis of structures is a computationally intensive procedure that must be considered, in order to make accurate seismic performance assessments in civil and structural engineering applications. To avoid these computationally demanding tasks, simplified methods are often used by engineers in practice, to estimate the behavior of complex structures under dynamic loading. This paper presents an assessment of several machine learning (ML) algorithms, with different characteristics, that aim to predict the dynamic analysis response of multi-story buildings. Large datasets of dynamic response analyses results were generated through standard sampling methods and conventional response spectrum modal analysis procedures. In an effort to obtain the best algorithm performance, an extensive hyper-parameter search was elaborated, followed by the corresponding feature importance. The ML model which exhibited the best performance was deployed in a web application, with the aim of providing predictions of the dynamic responses of multi-story buildings, according to their characteristics.
اللغةen
الناشرMDPI
الموضوعensemble algorithms
machine learning
response spectrum analysis
SHAP explainability
shear building
العنوانResponse Spectrum Analysis of Multi-Story Shear Buildings Using Machine Learning Techniques
النوعArticle
رقم العدد7
رقم المجلد11
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة