The Detection of Dysarthria Severity Levels Using AI Models: A Review
المؤلف | Al-Ali, Afnan |
المؤلف | Al-Maadeed, Somaya |
المؤلف | Saleh, Moutaz |
المؤلف | Naidu, Rani Chinnappa |
المؤلف | Alex, Zachariah C. |
المؤلف | Ramachandran, Prakash |
المؤلف | Khoodeeram, Rajeev |
المؤلف | Rajesh Kumar, M. |
تاريخ الإتاحة | 2024-10-13T09:32:24Z |
تاريخ النشر | 2024-01-01 |
اسم المنشور | IEEE Access |
المعرّف | http://dx.doi.org/10.1109/ACCESS.2024.3382574 |
الاقتباس | Al-Ali, A., Al-Maadeed, S., Saleh, M., Naidu, R. C., Alex, Z. C., Ramachandran, P., ... & Kumar, R. (2024). The Detection of Dysarthria Severity Levels Using AI Models: A Review. IEEE Access. |
الملخص | Dysarthria, a speech disorder stemming from neurological conditions, affects communication and life quality. Precise classification and severity assessment are pivotal for therapy but are often subjective in traditional speech-language pathologist evaluations. Machine learning models offer objective assessment potential, enhancing diagnostic precision. This systematic review aims to comprehensively analyze current methodologies for classifying dysarthria based on severity levels, highlighting effective features for automatic classification and optimal AI techniques. We systematically reviewed the literature on the automatic classification of dysarthria severity levels. Sources of information will include electronic databases and grey literature. Selection criteria will be established based on relevance to the research questions. The findings of this systematic review will contribute to the current understanding of dysarthria classification, inform future research, and support the development of improved diagnostic tools. The implications of these findings could be significant in advancing patient care and improving therapeutic outcomes for individuals affected by dysarthria. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | artificial intelligence (AI)-based models classification Dysarthria intelligibility severity levels |
النوع | Article |
رقم المجلد | 12 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]