عرض بسيط للتسجيلة

المؤلفZakraoui, Jezia
المؤلفSaleh, Moutaz
المؤلفAl-Maadeed, Somaya
المؤلفAlja’am, Jihad Mohamad
تاريخ الإتاحة2024-10-14T06:33:05Z
تاريخ النشر2023-04-01
اسم المنشورApplied Sciences (Switzerland)
المعرّفhttp://dx.doi.org/10.3390/app13085107
الاقتباسZakraoui, J., Saleh, M., Al-Maadeed, S., & Alja’am, J. M. (2023). A Pipeline for Story Visualization from Natural Language. Applied Sciences, 13(8), 5107.‏
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85156120519&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60096
الملخصGenerating automatic visualization from natural language texts is an important task for promoting language learning and literacy development for young children and language learners. However, translating a text into a coherent visualization matching its relevant keywords is a challenging problem. To tackle this issue, we proposed a robust story visualization pipeline ranging from NLP and relation extraction to image sequence generation and alignment. First, we applied a shallow semantic representation of the text where we extracted concepts including relevant characters, scene objects, and events in an appropriate format. We also distinguished between simple and complex actions. This distinction helped to realize an optimal visualization of the scene objects and their relationships according to the target audience. Second, we utilized an image generation framework along with different versions to support the visualization task efficiently. Third, we used CLIP similarity function as a semantic relevance metric
اللغةen
الناشرMDPI
الموضوعGAN
language learning
scene generation
story understanding
story visualization
العنوانA Pipeline for Story Visualization from Natural Language
النوعArticle
رقم العدد8
رقم المجلد13
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة