عرض بسيط للتسجيلة

المؤلفOttakath, Najmath
المؤلفAkbari, Younes
المؤلفAl-Maadeed, Somaya
المؤلفBouridane, Ahmed
المؤلفKhelifi, Fouad
تاريخ الإتاحة2024-10-14T09:36:01Z
تاريخ النشر2023-01-01
اسم المنشور2023 International Symposium on Networks, Computers and Communications, ISNCC 2023
المعرّفhttp://dx.doi.org/10.1109/ISNCC58260.2023.10323835
الاقتباسOttakath, N., Akbari, Y., Al-Maadeed, S., Bouridane, A., & Khelifi, F. (2023, October). Exploring Classification Models for Video Source Device Identification: A Study of CNN-SVM and Softmax Classifier. In 2023 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-6). IEEE.‏
الترقيم الدولي الموحد للكتاب [9798350335590]
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85179837896&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60111
الملخصVideo Source device identification plays a crucial role in video forensics as the proliferation of video capturing devices has given rise to crimes with videos that are challenging to trace. Reliance on metadata extraction is insufficient as it can be corrupted or manipulated to conceal the source of the crime. Another technique employed for source identification is noise pattern extraction, which generates a unique identification for the video camera. However, this method is susceptible to capture faults and can produce diverse noise patterns for each video. In addressing these challenges, there is a need to identify distinctive features that are consistent across all videos captured by the same camera. This has led to the adoption of computer vision techniques utilizing machine learning and deep learning. Classifiers play a crucial role in machine learning and data analysis, as they are responsible for categorizing or predicting results based on input data. Our experiments show that the subject is sensitive to classifiers and developing a good classifier or classifier-level fusions can improve results in practice for all datasets.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعCNN
Image classification
Softmax classifier
Source device identification
SVM
video forensics
العنوانExploring Classification Models for Video Source Device Identification: A Study of CNN-SVM and Softmax Classifier
النوعConference Paper
الصفحات1-6
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة