• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Object Depth and Size Estimation Using Stereo-Vision and Integration with SLAM

    View/Open
    Object_Depth_and_Size_Estimation_Using_Stereo-Vision_and_Integration_With_SLAM.pdf (1.954Mb)
    Date
    2024
    Author
    Hamad, Layth
    Khan, Muhammad Asif
    Mohamed, Amr
    Metadata
    Show full item record
    Abstract
    Autonomous robots use simultaneous localization and mapping (SLAM) for efficient and safe navigation in various environments. Light Detection and Ranging (LiDAR) sensors are integral in these systems for object identification and localization. However, LiDAR systems, though effective in detecting solid objects (e.g., trash bin, bottle, etc.), encounter limitations in identifying semitransparent or nontangible objects (e.g., fire, smoke, steam, etc.) due to poor reflecting characteristics. In addition, LiDAR also fails to detect features, such as navigation signs, and often struggles to detect certain hazardous materials that lack a distinct surface for effective laser reflection. In this letter, we propose a highly accurate stereo-vision approach to complement LiDAR in autonomous robots. The system employs advanced stereo vision-based object detection to detect both tangible and nontangible objects and then uses simple machine learning to precisely estimate the depth and size of the object. The depth and size information is then integrated into the SLAM process to enhance the robot's navigation capabilities in complex environments. Our evaluation, conducted on an autonomous robot equipped with LiDAR and stereo-vision systems, demonstrates high accuracy in the estimation of an object's depth and size.
    DOI/handle
    http://dx.doi.org/10.1109/LSENS.2024.3367956
    http://hdl.handle.net/10576/60210
    Collections
    • Computer Science & Engineering [‎2429‎ items ]
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video