عرض بسيط للتسجيلة

المؤلفAbdellatif, Alaa Awad
المؤلفAmer, Aya
المؤلفShaban, Khaled
المؤلفMassoud, Ahmed
تاريخ الإتاحة2024-10-20T11:14:50Z
تاريخ النشر2023-01-01
اسم المنشور2023 International Conference on Computing, Networking and Communications, ICNC 2023
المعرّفhttp://dx.doi.org/10.1109/ICNC57223.2023.10074440
الاقتباسAbdellatif, A. A., Amer, A., Shaban, K., & Massoud, A. (2023, February). A Novel Multivariate and Accurate Detection Scheme for Electricity Theft Attacks in Smart Grids. In 2023 International Conference on Computing, Networking and Communications (ICNC) (pp. 558-562). IEEE.‏
الترقيم الدولي الموحد للكتاب [9781665457194]
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85152020413&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60254
الملخصIn advanced metering infrastructure (AMI), smart meters (SMs) are deployed to periodically forward accurate power consumption readings from the client side to the electric utility companies/operators. Such readings are crucial for load monitoring, grid management, and billing. However, malicious clients or manipulated SMs may initiate electricity theft cyberat-tacks by reporting false/manipulated readings to deteriorate the grid performance or decrease their bills illegally. To identify these attacks, this paper proposes a novel multivariate electricity theft detector that considers not only the power consumption readings, like most existing techniques in the literature, but also the grid voltage and power losses. The proposed detector allows the electric utilities to accurately detect the electricity theft incidence and monitor diverse clients' loads. The proposed model was evaluated using real-world data, where it could outperform the baseline detector, that relies only on power consumption readings of different clients, by achieving around 5-15% enhancement in the detection rate of different, considered attacks.
راعي المشروعACKNOWLEDGMENT This work was made possible by PDRA grant # PDRA7-0410-21004 from the Qatar National Research Fund (a member of Qatar Foundation). The work of Khaled Shaban and Ahmed Massoud was supported by NPRP grant # NPRP11S-1202-170052. The findings achieved herein are solely the responsibility of the authors
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعadvanced metering infrastructure
anomaly detection
cyberattacks
electricity-theft detection
Machine learning
العنوانA Novel Multivariate and Accurate Detection Scheme for Electricity Theft Attacks in Smart Grids
النوعConference Paper
الصفحات558-562
dc.accessType Open Access


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة