• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IoT Anti-Jamming Strategy Using Game Theory and Neural Network

    View/Open
    IoT_Anti-Jamming_Strategy_Using_Game_Theory_and_Neural_Network.pdf (1.009Mb)
    Date
    2020-06
    Author
    Gouissem, A.
    Abualsaud, K.
    Yaacoub, E.
    Khattab, T.
    Guizani, M.
    Metadata
    Show full item record
    Abstract
    The internet of things (IoT) is one of the most exposed networks to attackers due to its widespread and its heterogeneity. In such networks, jamming attacks are widely used by malicious users to compromise the private and secure communications. Many techniques are proposed in the literature to secure the network from malicious jamming attacks. However, most of these techniques require either the implementation of complex coordination schemes or the use of high transmission power and are therefore challenging to implement in limited resources IoT networks. In this paper, a low complexity anti-jamming defending strategy using smart power allocation under limited power constraints is proposed for health monitoring IoT networks. This strategy is designed by formulating the worst case jamming effect minimization problem as a Colonel Blotto game while considering the slow channel fading effect. By analyzing the Nash Equilibrium (NE) of the game, making use of efficient and fast equilibrium approximation techniques, designing a fast numerical solving approach, training an artificial neural network (ANN) to enhance the accuracy of the estimation, an anti-jamming power allocating strategy is proposed and is shown to be effective in reducing the power consumption and in combating jamming attacks with less resources. A data population scheme is also proposed to make the proposed ANN exploit as much possible the available data to provide accurate NE estimation.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089700090&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC48107.2020.9148376
    http://hdl.handle.net/10576/60324
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video