Are authorities denying or supporting? Detecting stance of authorities towards rumors in Twitter
Author | Haouari, Fatima |
Author | Elsayed, Tamer |
Available date | 2024-11-05T06:05:18Z |
Publication Date | 2024 |
Publication Name | Social Network Analysis and Mining |
Resource | Scopus |
Identifier | http://dx.doi.org/10.1007/s13278-023-01189-3 |
ISSN | 18695450 |
Abstract | Several studies examined the leverage of the stance in conversational threads or news articles as a signal for rumor verification. However, none of these studies leveraged the stance of trusted authorities. In this work, we define the task of detecting the stance of authorities towards rumors in Twitter, i.e., whether a tweet from an authority supports the rumor, denies it, or neither. We believe the task is useful to augment the sources of evidence exploited by existing rumor verification models. We construct and release the first Authority STance towards Rumors (AuSTR) dataset, where evidence is retrieved from authority timelines in Arabic Twitter. The collection comprises 811 (rumor tweet, authority tweet) pairs relevant to 292 unique rumors. Due to the relatively limited size of our dataset, we explore the adequacy of existing Arabic datasets of stance towards claims in training BERT-based models for our task, and the effect of augmenting AuSTR with those datasets. Our experiments show that, despite its limited size, a model trained solely on AuSTR with a class-balanced focus loss exhibits a comparable performance to the best studied combination of existing datasets augmented with AuSTR, achieving a performance of 0.84 macro-F1 and 0.78 F1 on debunking tweets. The results indicate that AuSTR can be sufficient for our task without the need for augmenting it with existing stance datasets. Finally, we conduct a thorough failure analysis to gain insights for the future directions on the task. |
Sponsor | The work of Fatima Haouari was supported by GSRA grant# GSRA6-1-0611-19074 from the Qatar National Research Fund. The work of Tamer Elsayed was made possible by NPRP grant# NPRP 11 S-1204-170060 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National Library. |
Language | en |
Publisher | Springer |
Subject | Claims Evidence Fact-checking Social media Stance |
Type | Article |
Issue Number | 1 |
Volume Number | 14 |
Files in this item
This item appears in the following Collection(s)
-
Computer Science & Engineering [2402 items ]