Detecting Stance of Authorities Towards Rumors in Arabic Tweets: A Preliminary Study
المؤلف | Haouari, Fatima |
المؤلف | Elsayed, Tamer |
تاريخ الإتاحة | 2024-11-05T06:05:19Z |
تاريخ النشر | 2023 |
اسم المنشور | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1007/978-3-031-28238-6_33 |
الرقم المعياري الدولي للكتاب | 3029743 |
الملخص | A myriad of studies addressed the problem of rumor verification in Twitter by either utilizing evidence from the propagation networks or external evidence from the Web. However, none of these studies exploited evidence from trusted authorities. In this paper, we define the task of detecting the stance of authorities towards rumors in tweets, i.e., whether a tweet from an authority agrees, disagrees, or is unrelated to the rumor. We believe the task is useful to augment the sources of evidence utilized by existing rumor verification systems. We construct and release the first Authority STance towards Rumors (AuSTR) dataset, where evidence is retrieved from authority timelines in Arabic Twitter. Due to the relatively limited size of our dataset, we study the usefulness of existing datasets for stance detection in our task. We show that existing datasets are somewhat useful for the task; however, they are clearly insufficient, which motivates the need to augment them with annotated data constituting stance of authorities from Twitter. |
راعي المشروع | Acknowledgments. The work of Fatima Haouari was supported by GSRA grant# GSRA6-1-0611-19074 from the Qatar National Research Fund. The work of Tamer Elsayed was made possible by NPRP grant# NPRP11S-1204-170060 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Springer Science and Business Media Deutschland GmbH |
الموضوع | Claims Evidence Social media |
النوع | Conference |
الصفحات | 430-438 |
رقم المجلد | 13981 LNCS |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]