Simple but not naive: Fine-grained arabic dialect identification using only n-grams
Abstract
This paper presents the participation of Qatar University team in MADAR shared task, which addresses the problem of sentence-level fine-grained Arabic Dialect Identification over 25 different Arabic dialects in addition to the Modern Standard Arabic. Arabic Dialect Identification is not a trivial task since different dialects share some features, e.g., utilizing the same character set and some vocabularies. We opted to adopt a very simple approach in terms of extracted features and classification models; we only utilize word and character ngrams as features, and Naive Bayes models as classifiers. Surprisingly, the simple approach achieved non-naive performance. The official results, reported on a held-out testing set, show that the dialect of a given sentence can be identified at an accuracy of 64.58% by our best submitted run.
DOI/handle
http://hdl.handle.net/10576/60891Collections
- Computer Science & Engineering [2402 items ]