عرض بسيط للتسجيلة

المؤلفHasanain, Maram
المؤلفElsayed, Tamer
المؤلفMagdy, Walid
تاريخ الإتاحة2024-11-05T06:05:21Z
تاريخ النشر2015
اسم المنشورLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-319-28940-3_11
الرقم المعياري الدولي للكتاب3029743
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60896
الملخصTweet Timeline Generation (TTG) systems provide users with informative and concise summaries of topics, as they developed over time, in a retrospective manner. In order to produce a tweet timeline that constitutes a summary of a given topic, a TTG system typically retrieves a list of potentially-relevant tweets over which the timeline is eventually generated. In such design, dependency of the performance of the timeline generation step on that of the retrieval step is inevitable. In this work, we aim at improving the performance of a given timeline generation system by controlling the depth of the ranked list of retrieved tweets considered in generating the timeline. We propose a supervised approach in which we predict the optimal depth of the ranked tweet list for a given topic by combining estimates of list quality computed at different depths. We conducted our experiments on a recent TREC TTG test collection of 243M tweets and 55 topics. We experimented with 14 different retrieval models (used to retrieve the initial ranked list of tweets) and 3 different TTG models (used to generate the final timeline). Our results demonstrate the effectiveness of the proposed approach; it managed to improve TTG performance over a strong baseline in 76% of the cases, out of which 31% were statistically significant, with no single significant degradation observed.
راعي المشروعThis work was made possible by NPRP grant# NPRP 6-1377-1-257 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرSpringer Verlag
الموضوعDynamic retrieval cutoff
Microblogs
Query difficulty
Query performance prediction
Regression
Tweet summarization
العنوانImproving tweet timeline generation by predicting optimal retrieval depth
النوعConference Paper
الصفحات135-146
رقم المجلد9460
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة