عرض بسيط للتسجيلة

المؤلفAlmerekhi, Hind
المؤلفElsayed, Tamer
تاريخ الإتاحة2024-11-05T06:05:21Z
تاريخ النشر2015
اسم المنشورLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-319-28940-3_10
الرقم المعياري الدولي للكتاب3029743
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60897
الملخصRecently, Twitter, one of the most widely-known social media platforms, got infiltrated by several automation programs, commonly known as "bots". Bots can be easily abused to spread spam and hinder information extraction applications by posting lots of automatically-generated tweets that occupy a good portion of the continuous stream of tweets. This problem heavily affects users in the Arab region due to the recent developing political events as automated tweets can disturb communication and waste time needed in filtering such tweets. To mitigate this problem, this research work addresses the classification of Arabic tweets into automated or manual. We proposed four categories of features including formality, structural, tweet-specific, and temporal features. Our experimental evaluation over about 3.5 k randomly sampled Arabic tweets shows that classification based on individual categories of features outperform the baseline unigram-based classifier in terms of classification accuracy. Additionally, combining tweet-specific and unigram features improved classification accuracy to 92%, which is a significant improvement over the baseline classifier, constituting a very strong reference baseline for future studies.
اللغةen
الناشرSpringer Verlag
الموضوعArabic microblogs
Automated tweets
Bots
Crowdsourcing
Tweet classification
العنوانDetecting automatically-generated Arabic tweets
النوعConference Paper
الصفحات123-134
رقم المجلد9460
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة