• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive method for following dynamic topics on twitter

    View/Open
    14540-Article Text-18058-1-2-20201228.pdf (3.863Mb)
    Date
    2014
    Author
    Magdy, Walid
    Elsayed, Tamer
    Metadata
    Show full item record
    Abstract
    Many research social studies of public response on social media require following (i.e., tracking) topics on Twitter for long periods of time. The current approaches rely on streaming tweets based on some hashtags or keywords, or following some Twitter accounts. Such approaches lead to limited coverage of on-topic tweets. In this paper, we introduce a novel technique for following such topics in a more effective way. A topic is defined as a set of wellprepared queries that cover the static side of the topic. We propose an automatic approach that adapts to emerging aspects of a tracked broad topic over time. We tested our tracking approach on three broad dynamic topics that are hot in different categories: Egyptian politics, Syrian conflict, and international sports. We measured the effectiveness of our approach over four full days spanning a period of four months to ensure consistency in effectiveness. Experimental results showed that, on average, our approach achieved over 100% increase in recall relative to the baseline Boolean approach, while maintaining an acceptable precision of 83%.
    DOI/handle
    http://dx.doi.org/10.1609/icwsm.v8i1.14540
    http://hdl.handle.net/10576/60900
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video