Show simple item record

AuthorRahman, Md Sohanur
AuthorIslam, Khandaker Reajul
AuthorPrithula, Johayra
AuthorKumar, Jaya
AuthorMahmud, Mufti
AuthorAlam, Mohammed Fasihul
AuthorReaz, Mamun Bin Ibne
AuthorAlqahtani, Abdulrahman
AuthorChowdhury, Muhammad E.H.
Available date2024-11-05T09:31:44Z
Publication Date2024-09-27
Publication NameBMC medical informatics and decision making
Identifierhttp://dx.doi.org/10.1186/s12911-024-02685-y
CitationRahman, M. S., Islam, K. R., Prithula, J., Kumar, J., Mahmud, M., Alam, M. F., ... & Chowdhury, M. E. (2024). Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3. BMC medical informatics and decision making, 24(1), 249.‏
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85205335920&origin=inward
URIhttp://hdl.handle.net/10576/60934
AbstractBackground Sepsis poses a critical threat to hospitalized patients, particularly those in the Intensive Care Unit (ICU). Rapid identification of Sepsis is crucial for improving survival rates. Machine learning techniques offer advantages over traditional methods for predicting outcomes. This study aimed to develop a prognostic model using a Stacking-based Meta-Classifier to predict 30-day mortality risks in Sepsis-3 patients from the MIMIC-III database.
Languageen
PublisherSpringer Nature link
SubjectMachine
TitleCorrection: Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3
TypeArticle
Issue Number1
Volume Number24
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record