عرض بسيط للتسجيلة

المؤلفRen, Lijuan
المؤلفZhang, Haiqing
المؤلفSeklouli, Aicha Sekhari
المؤلفWang, Tao
المؤلفBouras, Abdelaziz
تاريخ الإتاحة2024-11-11T05:26:01Z
تاريخ النشر2023
اسم المنشورProceedings - 2023 International Conference on Computer Applications Technology, CCAT 2023
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/CCAT59108.2023.00042
معرّف المصادر الموحدhttp://hdl.handle.net/10576/61022
الملخصWith the improvement of living standards and changes in work habits caused by industrialization, the prevalence of diseases related to lifestyle is rising. In this context, the prevention of lifestyle-related diseases (LRDs) is extremely important. The majority of existing research exclusively concentrates on the prognosis of a particular LRD sickness, making it impossible for them to intelligently identify the important characteristics of the disease. Therefore, this study aims to propose a lifestyle-related disease prediction framework including three key components, called missing value module, feature selection module, and disease prediction module. The performance of the proposed framework is evaluated by using real medical data gathered during a hospital in Nanjing, China. The experiment shows that the proposed framework can automatically generate prediction ensemble models for specific LRDs diseases, and achieve good accurate performance.
راعي المشروعThis research is supported by the Sichuan Science and Technology Program of China (No.2021YFH0107 and 2022NSFSC0571), and the Science and Technology Innovation Capability Improvement Program of Chengdu University of Information Technology (No. KYQN202223).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعLifestyle-related diseases
Machine Learning
Missing values
Prediction
العنوانA Prediction Framework for Lifestyle-Related Disease Prediction Using Healthcare Data
النوعConference Paper
الصفحات190-195
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة