عرض بسيط للتسجيلة

المؤلفAejas, Bajeela
المؤلفBelhi, Abdelhak
المؤلفZhang, Haiqing
المؤلفBouras, Abdelaziz
تاريخ الإتاحة2024-11-11T05:26:01Z
تاريخ النشر2024
اسم المنشورNeural Computing and Applications
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/s00521-024-09869-7
الرقم المعياري الدولي للكتاب9410643
معرّف المصادر الموحدhttp://hdl.handle.net/10576/61026
الملخصEntity recognition and extraction from contracts play a crucial role in automating contract analysis and extracting valuable information. Named Entity Recognition (NER) techniques are used for identifying and classifying specific entities such as parties, dates, amounts, and clauses within contracts. In this study, we create a high-quality NER dataset from various types of English language contracts by considering their structure, and the legal terminology used within these documents. We present a systematic approach to manually annotate contracts with appropriate entity labels, ensuring accuracy and consistency. The resulting NER dataset serves as a valuable resource for training and evaluating NER models for contract analysis tasks. We evaluate the performance of NER on this dataset using a range of methods. These methods include Conditional Random Fields, various Bidirectional LSTM configurations, and BERT models. Each of these models brings different strengths and capabilities to the task of entity recognition, allowing for a comprehensive evaluation and the selection of the best models over the dataset. Among these, the NER model based on Contracts-BERT-base from the Legal-BERT family, which is pre-trained specifically on English contracts, outperformed all others, achieving an impressive overall F1 score of 0.94.
راعي المشروعThis publication was made possible by NPRP grant NPRP11S-1227-170135from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author ( www.supplyledger.qa ).
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعBERT
BiLSTM
Contracts dataset
NER
NLP
العنوانDeep learning-based automatic analysis of legal contracts: a named entity recognition benchmark
النوعArticle
الصفحات14465-14481
رقم العدد23
رقم المجلد36
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة