• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Front-end intelligence for large-scale application-oriented internet-of-things

    Thumbnail
    View/Open
    Front-end_intelligence_for_large-scale_application-oriented_internet-of-things.pdf (15.78Mb)
    Date
    2016
    Author
    Bader, Ahmed
    Ghazzai, Hakim
    Kadri, Abdullah
    Alouini, Mohamed-Slim
    Metadata
    Show full item record
    Abstract
    The Internet-of-things (IoT) refer to the massive integration of electronic devices, vehicles, buildings, and other objects to collect and exchange data. It is the enabling technology for a plethora of applications touching various aspects of our lives, such as healthcare, wearables, surveillance, home automation, smart manufacturing, and intelligent automotive systems. Existing IoT architectures are highly centralized and heavily rely on a back-end core network for all decision-making processes. This may lead to inefficiencies in terms of latency, network traffic management, computational processing, and power consumption. In this paper, we advocate the empowerment of front-end IoT devices to support the back-end network in fulfilling end-user applications requirements mainly by means of improved connectivity and efficient network management. A novel conceptual framework is presented for a new generation of IoT devices that will enable multiple new features for both the IoT administrators as well as end users. Exploiting the recent emergence of software-defined architecture, these smart IoT devices will allow fast, reliable, and intelligent management of diverse IoT-based applications. After highlighting relevant shortcomings of the existing IoT architectures, we outline some key design perspectives to enable front-end intelligence while shedding light on promising future research directions.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2016.2580623
    http://hdl.handle.net/10576/61463
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video