Show simple item record

AuthorUllah, Saif
AuthorHayat, Rameez
AuthorZeb, Kamran
AuthorRasheed, Ahmed
AuthorMuyeen, S. M.
Available date2024-12-25T08:47:57Z
Publication Date2024-06-19
Publication NameInternational Journal of Hydrogen Energy
Identifierhttp://dx.doi.org/10.1016/j.ijhydene.2024.05.326
CitationUllah, S., Hayat, R., Zeb, K., Rasheed, A., & Muyeen, S. M. (2024). Super-twisting sliding mode controller for energy storage system of a novel multisource hybrid electric vehicle: Simulation and hardware validation. International Journal of Hydrogen Energy, 71, 952-963.‏
ISSN03603199
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85193836294&origin=inward
URIhttp://hdl.handle.net/10576/62007
AbstractThe rapid depletion of fossil fuels, oil, and natural gas due to their excessive use is a source of motivation for finding alternative solutions. Global warming is also an important issue caused by the emission of harmful gases. Consequently, extensive research has been conducted on Fuel Cell-based Hybrid Electric Vehicles (FCEVs) to address the twin challenges of resource depletion and harmful emissions. This study presents a novel model comprising of four sources i.e. Fuel Cell (FC), Photo Voltaic panel (PV), battery, and Supercapacitor (SC). The Proton exchange membrane fuel cell (PEMFC) in which hydrogen is used as fuel is the primary source whereas the other three sources act as secondary sources. These sources are interconnected via DC converters to a DC bus. To regulate this Hybrid Energy Storage System (HESS), a Super-Twisting Sliding Mode Controller (ST-SMC) has been developed, ensuring global stability through the application of Lyapunov criteria. In addition, the proposed controller is compared with a conventional Sliding Mode Controller (SMC) and Integral Sliding Mode Controller (ISMC). Both simulation (MATLAB/Simulink 2021b) and hardware tests (MicroLabBox dSPACE RTI1202) confirm the system's stability, resilience, and efficient functionality across various dynamic scenarios. Comparative analysis between the three demonstrates the superiority of ST-SMC over the SMC and ISMC, as verified by the results.
Languageen
PublisherElsevier Ltd
SubjectFuel cell electric vehicles
Hybrid electric vehicles
Lyapunov
MicroLabBox dSPACE
Photovoltaic
Super-twisting sliding mode control
TitleSuper-twisting sliding mode controller for energy storage system of a novel multisource hybrid electric vehicle: Simulation and hardware validation
TypeArticle
Volume Number71
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record