عرض بسيط للتسجيلة

المؤلفRedekar, Abhijeet
المؤلفDhiman, Harsh S.
المؤلفDeb, Dipankar
المؤلفMuyeen, S. M.
تاريخ الإتاحة2024-12-25T09:00:22Z
تاريخ النشر2024-06-01
اسم المنشورAin Shams Engineering Journal
المعرّفhttp://dx.doi.org/10.1016/j.asej.2024.102716
الاقتباسRedekar, A., Dhiman, H. S., Deb, D., & Muyeen, S. M. (2024). On reliability enhancement of solar PV arrays using hybrid SVR for soiling forecasting based on WT and EMD decomposition methods. Ain Shams Engineering Journal, 15(6), 102716.‏
الرقم المعياري الدولي للكتاب20904479
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85187019073&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62009
الملخصSolar farms have PV arrays in arid and semi-arid regions where ensuring the system's reliability is paramount and face uncertain events like dust storms. The deposition of random dust patterns over panel arrays is called uneven soiling, which diminishes the power generation of such farms. This paper finds the most suitable hybrid algorithm model, the wavelet transform-based support vector regression variants (WT-SVR) algorithm, and the empirical model decomposition-based support vector regression variants (EMD-SVR) to predict the extent of soiling levels and uncertain events on PV arrays. The soiling dataset is taken from NREL's Soiling Station Number 3 in Imperial County, Calipatria, California, from December 30, 2014, to December 31, 2015. This research tested four SVR variants on soiling data, viz., εSVR, LSSVR, TSVR, and εTSVR, then compared with the benchmark random forest. The hyperparameters for each model are meticulously tuned to enhance the robustness of the trained algorithms. Results reveal that the WT-TSVR model outperforms the WT-SVR model in terms of wavelet transform decomposition by a margin of 91.6%. Similarly, the EMD-TSVR model showcases an 85.7% enhancement in performance over the EMD-SVR model based on empirical mode decomposition. All SVR variants outperform the benchmark model (RF). Furthermore, EMD models exhibit enhanced efficiency in forecasting random events compared to WT, which is attributed to their reduced computational time. This model applies to multi-cleaning agent robots, aligning with recommendations from the state-of-the-art literature.
اللغةen
الناشرAin Shams University
الموضوعEmpirical mode decomposition
Soiling forecasting
Support vector regression
Wavelet transform
العنوانOn reliability enhancement of solar PV arrays using hybrid SVR for soiling forecasting based on WT and EMD decomposition methods
النوعArticle
رقم العدد6
رقم المجلد15
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة