عرض بسيط للتسجيلة

المؤلفZoha, Ahmed
المؤلفSaeed, Arsalan
المؤلفImran, Ali
المؤلفImran, Muhammad Ali
المؤلفAbu-Dayya, Adnan
تاريخ الإتاحة2024-12-30T10:09:57Z
تاريخ النشر2015-08-26
اسم المنشورTransactions on Emerging Telecommunications Technologies
المعرّفhttp://dx.doi.org/10.1002/ett.2971
الاقتباسZoha, A., Saeed, A., Imran, A., Imran, M. A., & Abu‐Dayya, A. (2016). A learning‐based approach for autonomous outage detection and coverage optimization. Transactions on Emerging Telecommunications Technologies, 27(3), 439-450.
الرقم المعياري الدولي للكتاب2161-5748
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84959558959&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62052
الملخصTo be able to provide uninterrupted high quality of experience to the subscribers, operators must ensure high reliability of their networks while aiming for zero downtime. With the growing complexity of the networks, there exists unprecedented challenges in network optimization and planning, especially activities such as cell outage detection (COD) and mitigation that are labour-intensive and costly. In this paper, we address the challenge of autonomous COD and cell outage compensation in self-organising networks (SON). COD is a pre-requisite to trigger fully automated self-healing recovery actions following cell outages or network failures. A special case of cell outage, referred to as sleeping cell, remains particularly challenging to detect in state-of-the-art SON, because it triggers no alarms for operation and maintenance entity. Consequently, no SON compensation function can be launched unless site visits or drive tests are performed, or complaints are received by affected customers. To address this issue, our COD solution leverages minimization of drive test functionality, recently specified in third generation partnership project Release 10 for LTE networks, in conjunction with state-of-the art machine learning methods. Subsequently, the proposed cell outage compensation mechanism utilises fuzzy-based reinforcement learning mechanism to fill the coverage gap and improve the quality of service, for the users in the identified outage zone, by reconfiguring the antenna and power parameters of the neighbouring cells. The simulation results show that the proposed framework can detect cell outage situations in an autonomous fashion and also compensate for the detected outage in a reliable manner.
راعي المشروعThis work was made possible by NPRP grant no. 5-1047-2437 from the Qatar National Research Fund (a memberof The Qatar Foundation).
اللغةen
الناشرJohn Wiley and Sons
الموضوعcell outage detection
fuzzy-based reinforcement learning
العنوانA learning-based approach for autonomous outage detection and coverage optimization
النوعArticle
الصفحات439-450
رقم العدد3
رقم المجلد27
ESSN2161-3915
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة