• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep reinforced learning-based inductively coupled DSTATCOM under load uncertainties

    Thumbnail
    View/Open
    s00202-024-02446-0.pdf (2.703Mb)
    Date
    2024-01-01
    Author
    Mangaraj, M.
    Muyeen, S. M.
    Babu, B. Chitti
    Nizami, Tousif Khan
    Singh, Satyavir
    Chakravarty, Arghya
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Concerning the power quality issues in the power distribution network due to load uncertainties and improper impedance matching of the inductances, deep reinforced learning (DRL)-based inductively coupled DSTATCOM (IC-DSTATCOM) is proposed. First, by analyzing the impedance matching principle, the expression of source, load and filter current is derived with the help of inductive filtering transformer. And second, an individual DRL subnet structure is accumulated for each phase using mathematical equations to perform the better dynamic response. A 10-kVA, 230-V, 50-Hz prototype direct coupled distributed static compensator (DC-DSTATCOM) and IC-DSTATCOM experimental setup is buit to verify the experimental performance under uncertainties of loading. The IC-DSTATCOM is augmented better dynamic performance in terms of harmonics curtailment, improvement in power factor, load balancing, potential regulation, etc. The benchmark IEEE-519-2017, IEC-61727 and IEC-61000-1 grid code are used to evaluate the effectiveness of the simulation and experimental study.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85193497902&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00202-024-02446-0
    http://hdl.handle.net/10576/62079
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video