• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving Active Resonance Damping and Unbalanced Voltage Mitigation Based on Combined DDSRF and Washout Filter in Islanded Microgrids

    Thumbnail
    View/Open
    Improving_Active_Resonance_Damping_and_Unbalanced_Voltage_Mitigation_Based_on_Combined_DDSRF_and_Washout_Filter_in_Islanded_Microgrids.pdf (2.934Mb)
    Date
    2024-01-01
    Author
    Akbari, Ehsan
    Fakhrooeian, Mahan
    Jabari, Mostafa
    Banazadeh, Hamidreza
    Ahmadi, Monireh
    Muyeen, S. M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The existence of imbalanced single- and two-phase loads, coupled with short-circuit faults, contributes to voltage imbalance. It is inevitable to use LCL filters to remove harmonics caused by converter switching. While effective in removing harmonic components, these filters may inadvertently amplify and propagate resonance. Both voltage imbalance and active resonance significantly degrade power quality. This paper proposes a multi-level hierarchical control system to mitigate both phenomena. At Level 1, the controller incorporates proportional-resonant regulators for current and voltage. Level 2 employs common droop control to establish microgrid voltage and frequency reference values. Level 3 introduces a washout filter with an adjustable Kd gain, capable of attenuating active resonance harmonics originating from the LCL filter. Finally, Level 4 integrates a controller based on extracting positive and negative sequence components using the dual decoupled synchronous reference frame (DDSRF) algorithm. This controller effectively compensates for negative sequence components of voltage in the load bus, balancing load voltage. Simulation results for a standalone microgrid demonstrate that the proposed 4-level hierarchical control algorithm can reduce the load bus voltage imbalance from 10% to 2.5% under the most challenging conditions. It diminishes harmonic distortion caused by active resonance from 11% to 2.5%. The presented control algorithm can perform optimally under dynamic changes of active and reactive power of nonlinear and imbalanced loads. The main merit of this approach is not to use physical devices and Flexible Alternative Current Transmission Systems (FACTS), such as Active Power Filters (APF), Distribution Static Synchronous Compensators (DsSTATCOM), SVC, etc.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85191793037&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3393832
    http://hdl.handle.net/10576/62080
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video