• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Large-scale power system multi-area economic dispatch considering valve point effects with comprehensive learning differential evolution

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S2210650224001585.pdf (7.630Mb)
    Date
    2024
    Author
    Yang, Wang
    Xiong, Guojiang
    Xu, Shengping
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    The role of multi-area economic dispatch (MAED) in power system operation is increasingly significant. It is a non-linear and multi-constraint problem with many local extremes when considering the valve point effects, posing challenges in obtaining a globally optimal solution, especially for large-scale systems. In this study, an improved variant of differential evolution (DE) called CLDE based on comprehensive learning strategy (CLS) is proposed to solve this problem. Three improved strategies are employed to enhance the performance of CLDE. (1) A CLS-based guided mutation strategy is proposed, in which learning exemplars constructed by competent individuals are used to generate mutant vectors to prevent the searching away from global optimum and speed up convergence. (2) A time-varying increasing crossover rate is devised. It can endow CLDE with a larger probability at the later stage to help individuals escape from local extremes. (3) A CLS-based crossover strategy is presented. Trial vectors directly utilize the information from learning exemplars for evolving, which can ensure the search efficiency and population diversity. CLDE is applied to six MAED cases. Compared with DE, it approximately consumes 32 %, 35 %, 10 %, 22 %, 62 %, and 20 % of evaluations to attain comparable results, saves 126.2544$/h, 81.8173$/h, 152.0660$/h, 360.7907$/h, 65.5757$/h, and 1732.8544$/h in fuel costs on average, and exhibits improvements of 34.77 %, 1.80 %, 0.00 %, 76.09 %, 95.15 %, and 16.76 % in robustness, respectively. Moreover, it also outperforms other state-of-the-art algorithms significantly in statistical analysis. Furthermore, the effects of improved strategies on CLDE are thoroughly investigated. 2024
    DOI/handle
    http://dx.doi.org/10.1016/j.swevo.2024.101620
    http://hdl.handle.net/10576/62217
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video