• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dual population approximate constrained Pareto front for constrained multiobjective optimization

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S0020025523011763.pdf (980.7Kb)
    Date
    2023
    Author
    Jinlong, Zhou
    Zhang, Yinggui
    Suganthan, P.N.
    Metadata
    Show full item record
    Abstract
    For constrained multiobjective optimization problems (CMOPs), the ultimate goal is to obtain a set of well-converged and well-distributed feasible solutions to approximate the constrained Pareto front (CPF). Various constraints may change the position and/or shape of the CPF. This poses great challenges to the approximation of the CPF. This is especially true when the CPF mainly lies on constraint boundaries (i.e., CPF and unconstrained PF have little or even no intersection). To tackle this issue, we propose a novel dual population algorithm for approximating the CPF from both sides of the constraint boundaries. Specifically, 𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 uses the constrained-domination principle to approximate the CPF from the sides of feasible regions only; 𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2 adopts an improved 𝜖-constrained method to approximate the CPF from both the feasible as well as infeasible regions. Offspring generated by both populations are merged and combined with 𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 and 𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2. In addition, some selected members of 𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 and 𝑃 𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2 are permitted to migrate to the combined populations to facilitate knowledge sharing. Systematic experiments carried out on three benchmark test suites and 10 real-world CMOPs show the proposed algorithm achieved superior or competitive performance, especially for CMOPs where the CPF is mainly located at constraint boundaries. Therefore, on the basis of dual population, approximating CPFs from both sides of feasible and infeasible regions contributes an alternative approach to solving CMOPs.
    DOI/handle
    http://dx.doi.org/10.1016/j.ins.2023.119591
    http://hdl.handle.net/10576/62226
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video