• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A spectral-ensemble deep random vector functional link network for passive brain-computer interface

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S0957417423007819.pdf (1.357Mb)
    Date
    2023
    Author
    Li, Ruilin
    Gao, Ruobin
    Suganthan, Ponnuthurai N.
    Cui, Jian
    Sourina, Olga
    Wang, Lipo
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Randomized neural networks (RNNs) have shown outstanding performance in many different fields. The superiority of having fewer training parameters and closed-form solutions makes them popular in small datasets analysis. However, automatically decoding raw electroencephalogram (EEG) data using RNNs is still challenging in EEG-based passive brain-computer interface (pBCI) classification tasks. Models with the high-dimension input of EEG may suffer from overfitting and the intrinsic characteristics of non-stationary, high-level noises and subject variability could limit the generation of distinctive features in the hidden layers. To address these problems in EEG-based pBCI tasks, this work proposes a spectral-ensemble deep random vector functional link (SedRVFL) network that focuses on feature learning in the frequency domain. Specifically, an unsupervised feature-refining (FR) block is proposed to improve the low feature learning capability in RNNs. Moreover, a dynamic direct link (DDL) is performed to further complement the frequency information. The proposed model has been evaluated on a self-collected dataset as well as a public driving dataset. The cross-subject classification results obtained demonstrated its effectiveness. This work offers a new solution for EEG decoding, i.e., using optimized RNNs for decoding complex raw EEG data and boosting the classification performance of EEG-based pBCI tasks. 2023
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2023.120279
    http://hdl.handle.net/10576/62238
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video