• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probabilistic Wind Power Forecasting Using Optimized Deep Auto-Regressive Recurrent Neural Networks

    View/Open
    Probabilistic_Wind_Power_Forecasting_Using_Optimized_Deep_Auto-Regressive_Recurrent_Neural_Networks.pdf (2.709Mb)
    Date
    2023
    Author
    Arora, Parul
    Jalali, Seyed Mohammad Jafar
    Ahmadian, Sajad
    Panigrahi, B. K.
    Suganthan, P. N.
    Khosravi, Abbas
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Wind power forecasting is very crucial for power system planning and scheduling. Deep neural networks (DNNs) are widely used in forecasting applications due to their exceptional performance. However, the DNNs' architectural configuration has a significant impact on their performance, and the selection of proper hyper-parameters determines the success or failure of these models. Therefore, one of the challenging issues in DNNs is how to assess their hyper-parameter values effectively. Most of the previous researches in the literature have tuned the DNNs' hyper-parameters manually, which is a weak and time-consuming task. Using optimization/evolutionary algorithms is an effective way to obtain the optimal values of DNNs' hyper-parameters automatically. In this article, we propose a novel evolutionary algorithm that is based on the grasshopper optimization algorithm (GOA) improved by adding two evolutionary operators, opposition-based learning and chaos theory, to the optimization process. Overall, a novel probabilistic wind power forecasting model named neural GOA deep auto-regressive (NGOA-DeepAr) is proposed based on an auto-regressive recurrent neural network in which the proposed evolutionary algorithm has optimized its hyper-parameters. The performance of the proposed NGOA-DeepAr model is tested on two different datasets: One is the publicly available GEFCom-2014 dataset and the other is the Australian Energy Market Operator dataset. The prediction interval coverage probability and pinball loss for the two datasets are $[0.902, 0.320]$ and $[0.933, 1.4885]$, respectively. According to the experimental findings, our proposed NGOA-DeepAr is much faster in learning and outperforms the benchmark DNNs and the other neuroevolutionary models. 2005-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TII.2022.3160696
    http://hdl.handle.net/10576/62243
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video