• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Objective Multi-Picking-Robot Task Allocation: Mathematical Model and Discrete Artificial Bee Colony Algorithm

    View/Open
    Multi-Objective_Multi-Picking-Robot_Task_Allocation_Mathematical_Model_and_Discrete_Artificial_Bee_Colony_Algorithm.pdf (9.453Mb)
    Date
    2024
    Author
    Dai, Lou-Lei
    Pan, Quan-Ke
    Miao, Zhong-Hua
    Suganthan, Ponnuthurai Nagaratnam
    Gao, Kai-Zhou
    Metadata
    Show full item record
    Abstract
    With the advent of agriculture 4.0 era, the combination of agriculture and unmanned technology has promoted the development of intelligent agriculture. However, there are relatively few studies on the agricultural robot task allocation problem to optimize the cost and efficiency of smart farms. To make up this deficiency, this paper addresses a multi-picking-robot task allocation (MPRTA) problem with two objectives of minimizing the maximum completion time and minimizing the total travel length of all robots. An effective multi-objective discrete artificial bee colony (MODABC) algorithm is proposed to solve this problem. At first, a heuristic allocation method based on robot load balancing is designed to generate high-quality initial solutions. And then, a multi-objective self-adaptive strategy is proposed to enhance the exploitation and exploration of the algorithm. In addition, a multi-objective local search strategy for the non-dominated solutions is presented to help the population find better solutions. At last, extensive experiments based on different task sizes and robot scales of an intelligent orchard demonstrate the effectiveness and high performance of the proposed algorithm for solving the MPRTA problem.
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2023.3336659
    http://hdl.handle.net/10576/62251
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video