عرض بسيط للتسجيلة

المؤلفSong, Yanjie
المؤلفOu, Junwei
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفPedrycz, Witold
المؤلفYang, Qinwen
المؤلفXing, Lining
تاريخ الإتاحة2025-01-20T05:12:02Z
تاريخ النشر2023
اسم المنشورIEEE Transactions on Aerospace and Electronic Systems
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TAES.2023.3312626
الرقم المعياري الدولي للكتاب189251
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62262
الملخصEarth electromagnetic exploration satellites are widely used in many fields due to their wide detection range and high detection sensitivity. The complex environment and the proliferating number of satellites make management a primary issue. In this article, a learning adaptive genetic algorithm (LAGA) is proposed for the Earth electromagnetic satellite scheduling problem (EESSP). Control parameters are essential to the successful performance of evolutionary algorithms, and their sensitivity to the problem makes tuning parameters very time-consuming. In the LAGA, a gated recurrent unit (GRU) neural network model is used to control the parameters of variation operators. The neural network model is capable of leveraging real-time information to achieve dynamic parameter adjustment during population search. Moreover, a policy gradient-based reinforcement learning method is utilized to update the parameters of GRU. An adaptive evolution mechanism is employed in LAGA for the autonomous selection of crossover operators. Additionally, the heuristic initialization method, elite strategy, and local search method are incorporated into LAGA to enhance overall performance. Simulation experiments demonstrate the effectiveness of LAGA in solving the EESSP. This study highlights the advantages of utilizing reinforcement learning to optimize neural network models for controlling genetic algorithm searches. Learning adaptive planning methods can effectively address complex problem scenarios and enhance satellite scheduling system performance.
راعي المشروعThisworkwas supported in part by the Science and Technology Innovation Team of Shaanxi Province under Grant 2023-CX-TD-07, in part by the Special Project in Major Fields of Guangdong Universities under Grant 2021ZDZX1019, and in part by the Hunan Key Laboratory of Intelligent Decision-Making Technology for Emergency Management under Grant2020TP1013
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعControl parameters
earth electromagnetic satellite scheduling
gated recurrent unit (GRU)
genetic algorithm (GA)
learning adaptive
reinforcement learning
العنوانLearning Adaptive Genetic Algorithm for Earth Electromagnetic Satellite Scheduling
النوعArticle
الصفحات9010-9025
رقم العدد6
رقم المجلد59
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة