• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scheduling Eight-Phase Urban Traffic Light Problems via Ensemble Meta-Heuristics and Q-Learning Based Local Search

    View/Open
    Scheduling_Eight-Phase_Urban_Traffic_Light_Problems_via_Ensemble_Meta-Heuristics_and_Q-Learning_Based_Local_Search.pdf (2.556Mb)
    Date
    2023
    Author
    Lin, Zhongjie
    Gao, Kaizhou
    Wu, Naiqi
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    This paper addresses urban traffic light scheduling problems (UTLSP) with eight phases. The objective is to minimize the total vehicle delay time by assigning traffic phases and phase-timing optimally. A novel hybrid algorithm framework by combining meta-heuristics with Q-learning is proposed to solve the UTLSP for the first time. First, a mathematical model is developed to describe UTLSP. Second, five meta-heuristics are employed and improved to solve the concerned problems. Based on the feature of UTLSP, five local search operators are developed to improve the exploitation performance of the meta-heuristics. Third, two Q-learning-based ensemble strategies are designed to select the premium local search operators during the meta-heuristics' iterations. Finally, experiments are conducted on 10 cases with different scales. A total of 26 algorithms are compared for validation. Experimental results verify the effectiveness of the proposed ensemble strategies. Comparisons and discussions show that the improved water cycle algorithm with the first Q-learning strategy has the best competitiveness for solving the considered problems.
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2023.3296387
    http://hdl.handle.net/10576/62263
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video