عرض بسيط للتسجيلة

المؤلفSharma, Rahul
المؤلفGoel, Tripti
المؤلفTanveer, M
المؤلفSuganthan, P. N.
المؤلفRazzak, Imran
المؤلفMurugan, R
تاريخ الإتاحة2025-01-20T05:12:02Z
تاريخ النشر2023
اسم المنشورIEEE Journal of Biomedical and Health Informatics
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/JBHI.2022.3215533
الرقم المعياري الدولي للكتاب21682194
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62266
الملخصAs per the latest statistics, Alzheimer's disease (AD) has become a global burden over the following decades. Identifying AD at the intermediate stage became challenging, with mild cognitive impairment (MCI) utilizing credible biomarkers and robust learning approaches. Neuroimaging techniques like magnetic resonance imaging (MRI) and positron emission tomography (PET) are practical research approaches that provide structural atrophies and metabolic variations. With the help of MRI and PET scans, metabolic and structural changes in AD patients can be visible even ten years before the disease's onset. This paper proposes a novel wavelet packet transform-based structural and metabolic image fusion approach using MRI and PET scans. An eight-layer trained CNN extracts features from multiple layers and these features are fed to an ensemble of non-iterative random vector functional link (RVFL) models. The RVFL network incorporates the s-membership fuzzy function as an activation function that helps overcome outliers. Lastly, outputs of all the customized RVFL classifiers are averaged and fed to the RVFL classifier to make the final decision. Experiments are performed over Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and classification is made over CN vs. AD vs. MCI. The model performance obtained is decent enough to prove the effectiveness of the fusion-based ensemble approach.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAlzheimer's disease
magnetic resonance imaging
positron emission tomography
random vector functional link
العنوانConv-eRVFL: Convolutional Neural Network Based Ensemble RVFL Classifier for Alzheimer's Disease Diagnosis
النوعArticle
الصفحات4995-5003
رقم العدد10
رقم المجلد27
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة