عرض بسيط للتسجيلة

المؤلفSarabakha,
المؤلفriy
المؤلفQiao, Zhongzheng
المؤلفRamasamy, Savitha
المؤلفSuganthan, Ponnuthurai Nagaratnam
تاريخ الإتاحة2025-01-20T05:12:03Z
تاريخ النشر2023
اسم المنشورProceedings of the International Joint Conference on Neural Networks
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/IJCNN54540.2023.10191188
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62271
الملخصThis work presents a novel approach which integrates deep learning, online learning and continual learning paradigms for adaptive control for robotic systems. Deep learning allows generalising knowledge about the robot, while online learning can adapt to variable operating conditions, and continual learning enables remembering previous knowledge. The proposed method approximates the inverse dynamics of the robot, which is formulated as a regression problem. With a minimum knowledge of the robot's dynamics, the proposed method shows its capability to reduce tracking errors online by continuously learning and compensating for internal and external changing conditions. Furthermore, the simulation results show that the proposed approach with online continual learning improves the control performance of ground and aerial mobile robots.
راعي المشروعThis research was supported by the NTU Presidential Postdoctoral Fellowship (award number 021820-00001). This research is part of the programme DesCartes and is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعcontinual learning
mobile robotics
online learning
العنوانOnline Continual Learning for Control of Mobile Robots
النوعConference
الصفحات1-10
رقم المجلد2023-June
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة