• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Weighted Kernel Ridge Regression based Randomized Network for Alzheimer's Disease Diagnosis using Susceptibility Weighted Images

    View/Open
    Weighted_Kernel_Ridge_Regression_based_Randomized_Network_for_Alzheimers_Disease_Diagnosis_using_Susceptibility_Weighted_Images.pdf (2.774Mb)
    Date
    2023
    Author
    Tanveer, M.
    Verma, Shradha
    Sharma, Rahul
    Goel, Tripti
    Suganthan, P. N.
    Metadata
    Show full item record
    Abstract
    Alzheimer's disease (AD) is a neurological disorder that primarily affects the elderly and is characterized by cognitive decline and memory loss. Recent research has shown that susceptibility-weighted imaging (SWI) images are useful for diagnosing AD because they reveal abnormally high iron deposition in certain brain regions of people with the disease. Machine learning (ML) algorithms, particularly deep learning (DL) networks, are making incredible strides in AD diagnosis using imaging data to assist physicians in making decisions. The random-vector functional link network (RVFL) is an example of a single-hidden-layer feedforward network that uses a closed-form solution-based approach to offer a variety of feature mapping functions and kernels. In the proposed paper, SWI image features are extracted with a DL network, ResNet 50, and afterward classified with a kernel ridge regression-based RVFL network. To manage data with an unbalanced class distribution, we present a weighted kernel ridge regression-based RVFL network that is capable of generalizing to balanced data. We used SWI images from the publicly accessible OASIS dataset to evaluate the proposed methods for AD diagnosis. Experiment results show that the proposed model outperforms the state-of-the-art models.
    DOI/handle
    http://dx.doi.org/10.1109/IJCNN54540.2023.10191119
    http://hdl.handle.net/10576/62272
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video