عرض بسيط للتسجيلة

المؤلفGoel, Tripti
المؤلفSharma, Rahul
المؤلفTanveer, M.
المؤلفSuganthan, P. N.
المؤلفMaji, Krishanu
المؤلفPilli, Raveendra
تاريخ الإتاحة2025-01-20T05:12:03Z
تاريخ النشر2023
اسم المنشورIEEE Journal of Biomedical and Health Informatics
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/JBHI.2023.3242354
الرقم المعياري الدولي للكتاب21682194
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62274
الملخصAlzheimer's disease (AD) is one of the most known causes of dementia which can be characterized by continuous deterioration in the cognitive skills of elderly people. It is a non-reversible disorder that can only be cured if detected early, which is known as mild cognitive impairment (MCI). The most common biomarkers to diagnose AD are structural atrophy and accumulation of plaques and tangles, which can be detected using magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Therefore, the present paper proposes wavelet transform-based multimodality fusion of MRI and PET scans to incorporate structural and metabolic information for the early detection of this life-taking neurodegenerative disease. Further, the deep learning model, ResNet-50, extracts the fused images' features. The random vector functional link (RVFL) with only one hidden layer is used to classify the extracted features. The weights and biases of the original RVFL network are being optimized by using an evolutionary algorithm to get optimum accuracy. All the experiments and comparisons are performed over the publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to demonstrate the suggested algorithm's efficacy.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAlzheimer's disease
Alzheimer's Disease (AD)
Computational modeling
Diseases
Feature extraction
Magnetic resonance imaging
Magnetic Resonance Imaging (MRI)
Neuroimaging
Positron emission tomography
Positron emission tomography (PET)
Random Vector Functional Link (RVFL)
ResNet-50
العنوانMultimodal Neuroimaging based Alzheimer's Disease Diagnosis using Evolutionary RVFL Classifier
النوعArticle
الصفحات1-9
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة