• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ensemble Deep Random Vector Functional Link Neural Network Based on Fuzzy Inference System

    Thumbnail
    View/Open
    Ensemble_Deep_Random_Vector_Functional_Link_Neural_Network_Based_on_Fuzzy_Inference_System.pdf (1.686Mb)
    Date
    2024
    Author
    Sajid, M.
    Tanveer, M.
    Suganthan, Ponnuthurai N.
    Metadata
    Show full item record
    Abstract
    The ensemble deep random vector functional link (edRVFL) neural network has demonstrated the ability to address the limitations of conventional artificial neural networks. However, since edRVFL generates features for its hidden layers through random projection, it can potentially lose intricate features or fail to capture certain non-linear features in its base models (hidden layers). To enhance the feature learning capabilities of edRVFL, we propose a novel edRVFL based on fuzzy inference system (edRVFL-FIS). The proposed edRVFL-FIS leverages the capabilities of two emerging domains, namely deep learning and ensemble approaches, with the intrinsic IF-THEN properties of fuzzy inference system (FIS) and produces rich feature representation to train the ensemble model. Each base model of the proposed edRVFL-FIS encompasses two key feature augmentation components: a) unsupervised fuzzy layer features and b) supervised defuzzified features. The edRVFL-FIS model incorporates diverse clustering methods (R-means, K-means, Fuzzy C-means) to establish fuzzy layer rules, resulting in three model variations (edRVFL-FIS-R, edRVFL-FIS-K, edRVFL-FIS-C) with distinct fuzzified features and defuzzified features. Within the framework of edRVFL-FIS, each base model utilizes the original, hidden layer and defuzzified features to make predictions. Experimental results, statistical tests, discussions and analyses conducted across UCI and NDC datasets consistently demonstrate the superior performance of all variations of the proposed edRVFL-FIS model over baseline models.
    DOI/handle
    http://dx.doi.org/10.1109/TFUZZ.2024.3411614
    http://hdl.handle.net/10576/62279
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video