• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ensemble Deep Random Vector Functional Link Neural Network for Regression

    Thumbnail
    View/Open
    Ensemble_Deep_Random_Vector_Functional_Link_Neural_Network_for_Regression.pdf (2.061Mb)
    Date
    2023
    Author
    Hu, Minghui
    Herng Chion, Jet
    Suganthan, Ponnuthurai Nagaratnam
    Katuwal, Rakesh Kumar
    Metadata
    Show full item record
    Abstract
    Inspired by the ensemble strategy of machine learning, deep random vector functional link (dRVFL), and ensemble dRVFL (edRVFL) has shown state-of-The-Art results on different datasets. Our present work first fills the gap of dRVFL and edRVFL work in the field of regression. We test and evaluate the performances of the dRVFLs on regression problems. Subsequently, we propose a novel regularization method [boosted factor (BF)], two dRVFLs variants [edRVFL with skip connection (edRVFL-SC) and edRVFL with random skip connections (edRVFL-RSC)] and one strategy [ensemble skip connection edRVFL (esc-edRVFL)] which show significant improvement over the original dRVFL. The BF is a newly introduced hyperparameter to scale the values of the activated hidden neurons to accommodate the diversity of the data, and it is also able to filter the neurons. edRVFL-SC and edRVFL-RSC are the edRVFL variants with skip connections. In edRVFL-SC, we apply dense skip connections to the edRVFL, which is inspired by the residual architecture in the deep learning area. However, due to the specificity of randomized networks, the simple skip connections are probably leading to the reuse of useless features. To address this problem, we propose a random skip connection-based edRVFL, which can keep the diversity in the latent space. esc-RVFL is an ensemble scheme that utilizes several edRVFL-RSC models trained on the different folds of the training dataset. The esc-edRVFL is identified as the best-performing algorithm through a comprehensive evaluation of 31 UCI datasets.
    DOI/handle
    http://dx.doi.org/10.1109/TSMC.2022.3213628
    http://hdl.handle.net/10576/62282
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video