• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Self-Distillation for Randomized Neural Networks

    Thumbnail
    View/Open
    Self-Distillation_for_Randomized_Neural_Networks.pdf (4.407Mb)
    Date
    2023
    Author
    Hu, Minghui
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    Knowledge distillation (KD) is a conventional method in the field of deep learning that enables the transfer of dark knowledge from a teacher model to a student model, consequently improving the performance of the student model. In randomized neural networks, due to the simple topology of network architecture and the insignificant relationship between model performance and model size, KD is not able to improve model performance. In this work, we propose a self-distillation pipeline for randomized neural networks: the predictions of the network itself are regarded as the additional target, which are mixed with the weighted original target as a distillation target containing dark knowledge to supervise the training of the model. All the predictions during multi-generation self-distillation process can be integrated by a multi-teacher method. By induction, we have additionally arrived at the methods for infinite self-distillation (ISD) of randomized neural networks. We then provide relevant theoretical analysis about the self-distillation method for randomized neural networks. Furthermore, we demonstrated the effectiveness of the proposed method in practical applications on several benchmark datasets.
    DOI/handle
    http://dx.doi.org/10.1109/TNNLS.2023.3292063
    http://hdl.handle.net/10576/62283
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video