• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stability and thermophysical properties enhancement of Al2O3-water nanofluid using cationic CTAB surfactant

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2666202723001271-main.pdf (5.677Mb)
    Date
    2023-11-01
    Author
    Mehta, Bhavin
    Subhedar, Dattatraya
    Panchal, Hitesh
    Sadasivuni, Kishor Kumar
    Metadata
    Show full item record
    Abstract
    Excellent thermal characteristics of homogeneous dispersion of nano-sized particles in a carrier fluid (nanofluid) make it appealing for use in a variety of thermal applications. The study aims to prepare stable aqua-Al2O3 nanofluid utilizing a two-step method. To increase nanofluid stability, a cationic surfactant called cetyltrimethylammonium bromide (CTAB) is used. The carrier fluid is heated while magnetic stirring is used to increase nanoparticle distribution. Bath sonication with concurrent heating and probe sonication is used to improve long-term stability. The chemical composition of γ-Al2O3 was confirmed by X-ray diffraction (XRD) results, and Scanning Electron Microscopy (SEM) images revealed the shape and mean size of the particles. The stability of the synthesized sample is evaluated utilizing a variety of stability evaluation techniques, including visual examination, UV-vis spectrometry, and Dynamic Light Scattering (DLS), at various time intervals, including 1, 8, 15, and 30 days. After 15 days of manufacture, the stability of the nanofluid without surfactant was low. Due to improved particle suspension, nanofluid with surfactant has demonstrated greater UV-vis light absorption. After a month of synthesis, it was discovered that the mean particle sizes of suspended nanoparticles in carrier fluid were 80 nm and 536 nm for nanofluid with and without surfactant respectively. KD2Pro thermal analyzer and viscometer were used to measure the thermal conductivity and viscosity of nanofluid. As per the experimental results, a nanofluid's thermophysical characteristics were found to be improved with volume concentration of nanofluid. Maximum augmentation in thermal conductivity and dynamic viscosity is 8.5% and 76.2% respectively at 1% nanofluid volume concentration.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85163856967&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.ijft.2023.100410
    http://hdl.handle.net/10576/62555
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video