• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comprehensive Review of Digital Twin Technology in Building Energy Consumption Forecasting

    Thumbnail
    View/Open
    A_Comprehensive_Review_of_Digital_Twin_Technology_in_Building_Energy_Consumption_Forecasting.pdf (3.603Mb)
    Date
    2024
    Author
    Boukaf, Maissa
    Fadli, Fodil
    Meskin, Nader
    Metadata
    Show full item record
    Abstract
    With the global rise in urban populations, energy consumption in buildings has become a critical issue, now accounting for about 30% of total global energy use. Developing powerful energy forecasting systems is challenging due to frequent fluctuations in energy demand. The digitalization of building energy forecasting systems, enhanced by Energy Digital Twin technology alongside IoT devices and advanced data-driven algorithms, offers substantial improvements in energy management and optimization, servicing, maintenance, and energy-efficient design. This paper not only presents a literature evaluation categorizing the applications of digital twins in energy consumption forecasting but also conducts a thorough review of digital twin architecture and existing energy forecasting models through a systematic literature review approach. This evaluation enables the classification of studies into areas such as overall energy consumption prediction, HVAC system performance, and indoor air quality improvement, furthering the pursuit of net-zero and positive energy buildings as well as more effective energy systems. Furthermore, the findings and discussions presented in this paper potentially initiate future perspectives in developing a powerful digital twin system for energy forecasting in buildings and underscore the need for further research to address existing gaps and enhance the development of digital twins in building energy management, thereby meeting the sector's dynamic needs and contributing to global sustainability efforts.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3498107
    http://hdl.handle.net/10576/63148
    Collections
    • Architecture & Urban Planning [‎308‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video