• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Distributed High-Impedance Fault Detection and Protection Scheme in DC Microgrids

    View/Open
    A_Distributed_High-Impedance_Fault_Detection_and_Protection_Scheme_in_DC_Microgrids.pdf (3.284Mb)
    Date
    2024
    Author
    Yadegar, Meysam
    Zarei, Seyed Fariborz
    Meskin, Nader
    Blaabjerg, Frede
    Metadata
    Show full item record
    Abstract
    This paper proposes a high-impedance fault (HIF) detection and protection scheme for DC microgrids. HIFs occur when a (live) conductor makes contact with a surface which restricts the flow of fault current to a level that cannot be reliably sensed/detected by the conventional relays. HIF detection is an important concern for the electric power grid since it may cause public safety hazards. In this paper, a distributed HIF detection and localization scheme is proposed which considers the inherent HIF arc-characteristics of very low fault current amplitude, nonlinearity, buildup, shoulder, intermittence, and high-frequency content. The proposed scheme effectively identifies the faulty section, and provides forward and reverse fault discrimination capability. To verify the effectiveness of the proposed method, different sets of test cases and experiments are analyzed and presented. In the test cases, the forward/reverse faults and the noise-induced signals are considered and evaluated. Furthermore, detection and localization of both ideal and non-ideal HIFs are evaluated on the test system. The non-ideal HIFs are modeled based on the experimental test waveforms of HIFs. Also, the functionality of the proposed scheme is verified under normal condition with operational changes in a DC microgrid.
    DOI/handle
    http://dx.doi.org/10.1109/TPWRD.2023.3327307
    http://hdl.handle.net/10576/63152
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video