عرض بسيط للتسجيلة

المؤلفPatel, Adeetya
المؤلفBesombes, Camille
المؤلفDillibabu, Theerthika
المؤلفSharma, Mridul
المؤلفTamimi, Faleh
المؤلفDucret, Maxime
المؤلفChauvin, Peter
المؤلفMadathil, Sreenath
تاريخ الإتاحة2025-03-03T07:10:06Z
تاريخ النشر2024
اسم المنشورScientific Reports
المصدرScopus
المعرّفhttp://dx.doi.org/10.1038/s41598-024-81724-0
الرقم المعياري الدولي للكتاب20452322
معرّف المصادر الموحدhttp://hdl.handle.net/10576/63410
الملخصAccurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias. The model integrates three components: (i) a Classification Stream, utilizing a CNN to categorize images into 16 lesion types (baseline model), (ii) a Guidance Stream, which aligns class activation maps with clinically relevant areas using ground truth segmentation masks (GAIN model), and (iii) an Anatomical Site Prediction Stream, improving interpretability by predicting lesion location (GAIN+ASP model). The development dataset comprised 2765 intra-oral digital images of 16 lesion types from 1079 patients seen at an oral pathology clinic between 1999 and 2021. The GAIN model demonstrated a 7.2% relative improvement in accuracy over the baseline for 16-class classification, with superior class-specific balanced accuracy and AUC scores. Additionally, the GAIN model enhanced lesion localization and improved the alignment between attention maps and ground truth. The proposed models also exhibited greater robustness against dataset bias, as shown in ablation studies.
راعي المشروعWe would like to acknowledge the contributions of Mehak Khanna, and Mohammed Al-Shehri for their contribution toward data cleaning and pre-processing. This project was funded by the Canadian Institue of Health Research Project Grant [PJT-438778]. S Madathil is a recipient of a Career Award from the Fonds de Recherche du Qu\u00E9bec-Sant\u00E9. This research was partly enabled by support provided by Calcul Quebec ( calculquebec.ca ) and the Digital Research Alliance of Cancer ( alliancecan.ca ).
اللغةen
الناشرNature Research
الموضوعBias mitigation
CNN
Guided attention inference network
Interpretability
Oral lesion diagnosis
العنوانAttention-guided convolutional network for bias-mitigated and interpretable oral lesion classification
النوعArticle
رقم العدد1
رقم المجلد14
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة