• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and growth mechanism of bamboo like N-doped CNT/Graphene nanostructure incorporated with hybrid metal nanoparticles for overall water splitting

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0008622320308137-main.pdf (3.382Mb)
    Date
    2020
    Author
    Ashok, Anchu
    Kumar, Anand
    Ponraj, Janarthanan
    Mansour, Said A.
    Metadata
    Show full item record
    Abstract
    Herein, we report a melamine and metal-salt based pyrolysis technique for synthesizing metal encapsulated N-doped carbon nanotube (CNTs) in form of bamboo-like CNTs and multi walled CNTs (MWCNT). Sulfur doping during synthesis greatly influenced the physio-chemical properties of the material formed. X-ray diffraction (XRD) analysis confirms NiCo alloy (NiCo@CNT) formation that transformed into a hybrid NiCo/Co3Ni6S8/Co3O4 nanocomposite (NiCoS@CNT) in presence of sulfur. A detailed study was conducted on the mechanism of the formation of metal-encapsulated N-doped CNT structures from the polymerization of melamine. The unique NiCoS@CNT structure renders high specific surface area (232.2 m2/g), large pore volume (0.92 cm2/g), and high lattice defect with abundant oxygen vacancies resulting in excellent performance for OER and HER in alkaline medium. The hybrid catalyst requires over-potentials of 198 mV and 295 mV to deliver a current-density of 10 mAcm−2, respectively for HER and OER. A cell voltage of only 1.53 V was required to deliver a long-term stable current-density of 10 mAcm−2 for water splitting when NiCoS@CNT was used as both anode and cathode. Superior performance of NiCoS@CNT could be ascribed to high surface area, abundant active sites, fast charge-transfer rate, high pyridinic-N content and the presence of highly conductive CNT architecture.
    DOI/handle
    http://dx.doi.org/10.1016/j.carbon.2020.08.047
    http://hdl.handle.net/10576/63547
    Collections
    • Chemical Engineering [‎1201‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video