• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A decision-making analysis in UAV-enabled wireless power transfer for IoT networks

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1569190X2030040X-main.pdf (2.205Mb)
    Date
    2020
    Author
    Lhazmir, Safae
    Oualhaj, Omar Ait
    Kobbane, Abdellatif
    Mokdad, Lynda
    Metadata
    Show full item record
    Abstract
    We consider an IoT network with energy-harvesting capabilities. To extend the network lifetime, we propose a novel unmanned aerial vehicle (UAV)- enabled wireless power transfer (WPT) system, where UAVs move among IoT devices and act as data aggregators and wireless power providers. This paper addresses the decision-making problem since the limited buffer and energy resources constrain all nodes. Each IoT node must decide on whether to request a data transmission, to ask for a wireless energy transfer or to abstain and not take any action. When a UAV receives a request from an IoT device, either for data reception or wireless energy transmission, it has to accept or decline. In this paper, we aim to find a proper packet delivery and energy transfer policy according to the system state that maximizes the data transmission efficiency of the system. We first formulate the problem as a Markov Decision Process (MDP) to tackle the successive decision issues, to optimize a utility for each node upon a casual environment. As the MDP formalism achieves its limits when the interactions between different nodes are considered, we formulate the problem as a Graph-based MDP (GMDP). The transition functions and rewards are then decomposed into local functions, and a graph illustrates the dependency' relations among the nodes. To obtain the optimal policy despite the system's variations, Mean-Field Approximation (MFA) and Approximate linear-programming (ALP) algorithms were proposed to solve the GMDP problem.
    DOI/handle
    http://dx.doi.org/10.1016/j.simpat.2020.102102
    http://hdl.handle.net/10576/63816
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video