• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Decision Support Tool for the Optimal Monitoring of the Microclimate Environments of Connected Smart Greenhouses

    Thumbnail
    View/Open
    A_Decision_Support_Tool_for_the_Optimal_Monitoring_of_the_Microclimate_Environments_of_Connected_Smart_Greenhouses.pdf (1.460Mb)
    Date
    2020
    Author
    Ouammi, Ahmed
    Choukai, Oumaima
    Zejli, Driss
    Sayadi, Sami
    Metadata
    Show full item record
    Abstract
    In this paper, a comprehensive decision support tool based advanced monitoring system is developed to support transition to smart greenhouses for sustainable and clean food production. The decision framework aims to optimally control and manage the microclimate environments of smart connected greenhouses, where each greenhouse is defined as a self-water producing through an enhanced water desalination process. The main advantage of the current approach lies in the ability of the greenhouses to produce their water loads locally. This paper aims to develop an efficient decision tool able of performing specific monitoring and control functionalities to optimize the operation of the greenhouses where the aim is the energy and water savings. A decision model is implemented for the precise regulation and control of the indoor microclimate defining the optimal growth conditions for the crops. Furthermore, a predictive algorithm is developed to simulate in real time the operation of the greenhouses under various conditions, to assess the response of the system to storage dynamics and renewable sources, as well to control the complex indoor microclimate, energy and water flows, as well to optimize the crops growth. The developed tool is tested through a case study where the influences of climate data on the operation of the whole network are analyzed via numerical results.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3039889
    http://hdl.handle.net/10576/63831
    Collections
    • Center for Sustainable Development Research [‎338‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video