• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A lamellar chitosan-lignosulfonate/MXene nanocomposite as binder-free electrode for high-performance capacitive deionization

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0011916423008196-main.pdf (10.01Mb)
    Date
    2024-03-15
    Author
    Alfahel, Radwan
    Tong, Yongfeng
    Pasha, Mujaheed
    Hawari, Alaa H.
    Mahmoud, Khaled A.
    Metadata
    Show full item record
    Abstract
    Ti3C2Tx (MXene) is considered as a superior electrode material for capacitive deionization (CDI) due to its high conductivity and two-dimensional structure. However, the electrochemical performance of pristine MXene nanosheets has been significantly impeded by the surface oxidation in the aqueous media and re-stacking caused by van der Waals forces which reduces the ions storage capacity. In this study, the chitosan-lignosulfonate/MXene (CLM) composite was used as a binder-free electrode to enhance the ion storage capacity and long-run cycling stability for hybrid capacitive deionization (HCDI). The chitosan-lignosulfonate nanospheres were able to increase the interlayer spacing between the MXene nanosheets effectively, which has significantly enhanced the ion storage capacity and electrochemical properties of the electrode. The binder-free CLM cathode demonstrated a high salt adsorption capacity of 44.6 mg g−1 and a maximum average salt adsorption rate of 5.8 mg g−1 min−1 at 1.2 V. A high cycling stability above 97 % for 30 cycles was observed. Also, the long-term stability of CLM electrode was studied by X-ray photoelectron spectroscopy (XPS) and the results showed that the CLM electrode was not prone to surface oxidation after 30 cycles. This study can guide future development of high-performance 2D material composite electrodes for enhancing capacitive deionization efficiency.
    URI
    https://www.sciencedirect.com/science/article/pii/S0011916423008196
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2023.117187
    http://hdl.handle.net/10576/64328
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video