عرض بسيط للتسجيلة

المؤلفHui, Yu
المؤلفGao, Kaizhou
المؤلفLi, Zhiwu
المؤلفSuganthan, Ponnuthurai Nagaratnam
تاريخ الإتاحة2025-05-12T07:59:59Z
تاريخ النشر2024-09-12
اسم المنشورApplied Soft Computing
المعرّفhttp://dx.doi.org/10.1016/j.asoc.2024.112247
الاقتباسYu, H., Gao, K., Li, Z., & Suganthan, P. N. (2024). Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics. Applied Soft Computing, 166, 112247.
الرقم المعياري الدولي للكتاب1568-4946
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S1568494624010214
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64869
الملخصThis study addresses energy-efficient multi-objective distributed assembly permutation flowshop scheduling problems with minimisation of maximum completion time, mean of earliness and tardiness, and total carbon emission simultaneously. A mathematical model is introduced to describe the concerned problems. Five meta-heuristics are employed and improved, including the artificial bee colony, genetic algorithms, particle swarm optimization, iterated greedy algorithms, and Jaya algorithms. To improve the quality of solutions, five critical path-based neighborhood structures are designed. Q-learning, a value-based reinforcement learning algorithm that learns an optimal strategy by repeatedly interacting with the environment, is embedded into meta-heuristics. The Q-learning guides algorithms intelligently select appropriate neighborhood structures in the iterative process. Then, two machine speed adjustment strategies are developed to further optimize the obtained solutions. Finally, extensive experimental results show that the Jaya algorithm with Q-learning has the best performance for solving the considered problems.
راعي المشروعThis study is partially supported by the Science and Technology Development Fund (FDCT), Macau SAR, under Grant 0019/2021/A, the National Natural Science Foundation of China under Grant 62173356, Zhuhai Industry-University-Research Project with Hongkong and Macao under Grant ZH22017002210014PWC, the Guangdong Basic and Applied Basic Research Foundation (2023A1515011531), research on the key technologies for scheduling and optimization of complex distributed manufacturing systems (22JR10KA007).
اللغةen
الناشرElsevier
الموضوعEnergy-efficient scheduling
Distributed assembly permutation flowshop scheduling
Carbon emission
Meta-heuristic
Q-learning
العنوانEnergy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics
النوعArticle
رقم المجلد166
ESSN1872-9681
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة