عرض بسيط للتسجيلة

المؤلفPeng, Chen
المؤلفLi, Zhimeng
المؤلفQiao, Kangjia
المؤلفSuganthan, P.N.
المؤلفBan, Xuanxuan
المؤلفYu, Kunjie
المؤلفYue, Caitong
المؤلفLiang, Jing
تاريخ الإتاحة2025-05-12T08:08:22Z
تاريخ النشر2024-10-11
اسم المنشورSwarm and Evolutionary Computation
المعرّفhttp://dx.doi.org/10.1016/j.swevo.2024.101738
الاقتباسChen, P., Li, Z., Qiao, K., Suganthan, P. N., Ban, X., Yu, K., ... & Liang, J. (2024). An archive-assisted multi-modal multi-objective evolutionary algorithm. Swarm and Evolutionary Computation, 91, 101738.
الرقم المعياري الدولي للكتاب2210-6502
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S2210650224002761
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64870
الملخصThe multi-modal multi-objective optimization problems (MMOPs) pertain to characteristic of the decision space that exhibit multiple sets of Pareto optimal solutions that are either identical or similar. The resolution of these problems necessitates the utilization of optimization algorithms to locate multiple Pareto sets (PSs). However, existing multi-modal multi-objective evolutionary algorithms (MMOEAs) encounter difficulties in concurrently enhancing solution quality in both decision space and objective space. In order to deal with this predicament, this paper presents an Archive-assisted Multi-modal Multi-objective Evolutionary Algorithm, called A-MMOEA. This algorithm maintains a main population and an external archive, which is leveraged to improve the fault tolerance of individual screening. To augment the quality of solutions in the archive, an archive evolution mechanism (AEM) is formulated for updating the archive and an archive output mechanism (AOM) is used to output the final solutions. Both mechanisms incorporate a comprehensive crowding distance metric that employs objective space crowding distance to facilitate the calculation of decision space crowding distance. Besides, a data screening method is employed in the AOM to alleviate the negative impact on the final results arising from undesirable individuals resulting from diversity search. Finally, in order to enable individuals to effectively escape the limitation of niches and further enhance diversity of population, a diversity search method with level-based evolution mechanism (DSMLBEM) is proposed. The proposed algorithm’s performance is evaluated through extensive experiments conducted on two distinct test sets. Final results indicate that, in comparison to other commonly used algorithms, this approach exhibits favorable performance.
راعي المشروعThis work was supported in part by National Natural Science Fund for Outstanding Young Scholars of China ( 61922072 ), Key R&D projects of the Ministry of Science and Technology of China ( 2022YFD2001200 ), National Natural Science Foundation of China ( 62176238 , 61806179 , 61876169 , 62106230 and 61976237 ), China Postdoctoral Science Foundation ( 2020M682347 , 2021T140616 , 2021M692920 ), Training Program of Young Backbone teachers in Colleges and universities in Henan Province ( 2020GGJS006 ), Henan Provincial Young Talents Lifting Project ( 2021HYTP007 ), Natural Science Foundation project of Henan Province ( 242300420277 ), and Chongqing University of Posts and Telecommunications Key Laboratory of Big Data open fund project ( BDIC-2023-B-005 ).
اللغةen
الناشرElsevier
الموضوعMulti-modal multi-objective optimization
Archive evolution mechanism
Diversity search method with level-based evolution
Archive output mechanism
العنوانAn archive-assisted multi-modal multi-objective evolutionary algorithm
النوعArticle
رقم المجلد91
ESSN2210-6510
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة