• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quasi-static axial crushing investigation of filament-wound eco-friendly energy-absorbing glass fiber and jute fiber composite structures

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2238785424010810-main.pdf (15.06Mb)
    Date
    2024-06-30
    Author
    Samim, Samahat
    Mahdi, Elsadig
    Mustapha, Mariatti
    Rusli, Arjulizan
    Shakoor, R.A.
    Metadata
    Show full item record
    Abstract
    This study conducts a comparative analysis of glass fiber (GF) and jute fiber (JF) as energy-absorbing filament wound eco-friendly structures under quasi-static axial crushing with varying wall thickness, starting with a 2-layer configuration and progressing to 4 and 6 layers. Three primary failure modes, fiber-matrix fracturing, local buckling, and delamination were observed. Both JF and GF 2-layer configurations showed less progressive failure due to their lightweight nature, with crush force efficiency (CFE) of 0.44–0.46 and specific energy absorption (SEA) of 4.4–5.1 J/g, raising considerations for crash scenarios involving human safety. The 4-layer JF configuration demonstrated a significant increase in IPF to 3496 N, effectively restricting buckling and brittle fracture and leading to a higher SEA of 12.61 J/g. In comparison, the GF 4-layer configuration exhibits lower initial peak force (IPF) and SEA values but a higher CFE value of 0.64 at a lower weight of 58 g. The 6-layer JF configuration attains increased stability in load-bearing capacity with a CFE of 0.84 but at the cost of a high weight of 128 g. On the other hand, the 6-layer GF configuration showcases a higher SEA of 10.5 J/g with a moderate CFE of 0.75 and slightly lower weight, suggesting a delicate balance between performance and weight. Visual examination revealed dominant failure modes as local buckling in GF and brittle fracturing in JF configurations. Overall, the 4-layer configurations of JF and the 6-layer configuration of GF composite tubes demonstrate exceptional energy absorption efficiency, suggesting the potential for exploring hybrid configurations to achieve a balanced crashworthiness performance.
    URI
    https://www.sciencedirect.com/science/article/pii/S2238785424010810
    DOI/handle
    http://dx.doi.org/10.1016/j.jmrt.2024.05.040
    http://hdl.handle.net/10576/65099
    Collections
    • Center for Advanced Materials Research [‎1522‎ items ]
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video