• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of layered transition metal dichalcogenide hybrid nanomaterials on the piezoelectric performance of non-solvent induced phase separated polyvinylidene fluoride

    View/Open
    Polymer Engineering Sci - 2024 - Kacem - Effect of layered transition metal dichalcogenide hybrid nanomaterials on the.pdf (3.121Mb)
    Date
    2024
    Author
    Kacem, Eya
    Al-Ejji, Maryam
    Yempally, Swathi
    Ponnamma, Deepalekshmi ()
    Metadata
    Show full item record
    Abstract
    Layered transition metal dichalcogenides (TMDs) with high aspect ratios enhance the alignment of polymer chains and induce a preferred orientation of the polymeric crystallites when incorporated into polyvinylidene fluoride (PVDF). In addition to offering an effective charge-transfer mechanism, TMDs give PVDF more rigidity and piezoelectric qualities. This work reports the non-solvent induced phase separation (NIPS) introduced while developing the PVDF/MoS2 composites. During the NIPS, the PVDF chains become phase-separated, which induces high polarization in the PVDF matrix. Phase-separated PVDF/MoS2 composites show high porosity and charge distribution attributed to the enhanced piezoelectric output voltage. While the neat PVDF demonstrated very feeble output voltage generation, the hybrid composite containing 2 wt.% of MoS2/ZnO facilitated almost 20 times higher performance (peak-to-peak voltage of 2.4 V). This work yielded a phase-separated composite that finds uses in energy harvesting, sensors, and actuators, among other fields. Highlights: NIPS creates high-porosity composites with improved charge distribution. Layered TMDs improve charge-transfer mechanism and PVDF's electrical properties. 2 wt.% MoS2/ZnO exhibits nearly 20 times higher voltage generation than neat PVDF.
    DOI/handle
    http://dx.doi.org/10.1002/pen.26762
    http://hdl.handle.net/10576/65613
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]
    • Materials Science & Technology [‎337‎ items ]
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video