• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tailoring CO2 detection capabilities using Co-ZnO/MoS2 nanocomposites through electrolyte concentration modulation

    Thumbnail
    View/Open
    s10853-024-10331-1.pdf (4.721Mb)
    Date
    2024
    Author
    Yempally, Swathi
    Al-Ejji, Maryam
    Zaidi, Shabi Abbas
    Ponnamma, Deepalekshmi
    Metadata
    Show full item record
    Abstract
    The current study explores a new approach to investigate the CO2 detection capabilities of cobalt-doped zinc oxide (Co-ZnO) combined with molybdenum sulfide (MoS2) hybrid nanomaterials Co-ZnO/MoS2 (CZM). The hydrothermally synthesized CZM composites provide unique structural and compositional properties, with 25 nm as their longest dimension (length), and specific lattice structure. CZM-based electrodes are developed by preparing the nanomaterial-dispersed ink, and potentiometric studies explore the optimal sensing performance. We found significant enhancements in sensitivity, reaction time, and reduction efficiency by systematically changing the electrolyte concentration in the electrode cell. Bode and Nyquist plots explain the influence of electrolyte concentration and the nanomaterial synergy in CO2 sensing and conversion with the 0.1 N electrolyte with the maximum efficiency. By offering important insights into how the electrolyte content affects the performance of Co-ZnO/MoS2 nanocomposite sensors, this study advances the field of CO2 sensing technology. Further, the nanomaterials extend their applicability in environmental monitoring, evaluating indoor air quality, and industrial processes.
    DOI/handle
    http://dx.doi.org/10.1007/s10853-024-10331-1
    http://hdl.handle.net/10576/65861
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]
    • Chemistry & Earth Sciences [‎613‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video